Closing the STEM achievement gap

By: Olivia Flores

There is still a strong achievement gap for underrepresented minorities in the science, technology, engineering and mathematics (STEM) fields. There needs to be an increase of local efforts to create STEM programs for minority students in underrepresented communities. Implementing after-school science programs for minority students will increase their participation rates and lead to positive attitudes towards STEM.

Engaging students in STEM programs from a young age increases their participation for future STEM disciplines. STEM programs can increase interest of underrepresented minorities (URM) starting at a young age. A third of students lose an interest in science by the time they reach fourth grade. The number increases to 50 percent of students losing interest or finding science irrelevant to their future plans by the time they reach eighth grade. URM (Black, Hispanic, Native Americans, Pacific Islanders) in extracurricular programs would help suffice for the lack of exposure to STEM fields and close the persistent achievement gap.

A IEEE study by Yeaun and associates evaluated the influence of robotic clubs in increasing participation of URM in STEM. Hispanics are the fastest growing minority population in the U.S, yet only earn about 10% of undergraduate students majoring in science and engineering. The study states that the only STEM resources for many low income Hispanic students are public classrooms. However, the curriculum of the education system implements practices that neglect the needs of culturally and linguistically diverse students. URM students potentially see language barriers and their cultural background to disconnect them from success in STEM. Employing a teaching curriculum in a STEM program that values a child’s linguistic and cultural backgrounds as sources of knowledge or “funds of knowledge” will create a positive outlook on STEM disciplines. The authors design and establish after-school robotic clubs throughout San Antonio to sustain children’s interests in STEM; particularly those children from URM. The study recognizes that robotic clubs have become one of the most popular activities for K-12 schools. The school district consisted of having large hispanic and economically disadvantaged populations. The research concludes that the design of these clubs and implementation open up a STEM pipeline to low-income Hispanic students, and can be used to target other underrepresented minorities.

Local efforts need to increase to create STEM pipeline programs in and out of school to increase participation from underrepresented minorities, starting from a young age. Narrowing the achievement gap in STEM to increase the diversity is vital because it is no more diverse than it was 14 years ago. Taking action and targeting STEM programs to URM will broaden their participation, creating a very beneficial step to seeing more culturally diverse fields of science in the future.

Hurtado, S., Newman, C. B., Tran, M. C., & Chang, M. J. (2010). Improving the rate of success for underrepresented racial minorities in STEM fields: Insights from a national project. New Directions For Institutional Research, 2010(148), 5-15.

Yuen, T. T., Ek, L. D., Scheutze, A.(2013) Increasing participation from underrepresented minorities in STEM through robotics clubs. IEEE International Conference on Teaching, Assessment and Learning for Engineering, 2013.

Bidwell, A. (n.d.). STEM Workforce No More Diverse Than 14 Years Ago. Retrieved November 19, 2016, from


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s