Why not go to an exoplanet?

by Dawna Peterson

An exoplanet is not just a planet outside of our Solar System, but it’s a planet that holds new and debateable discoveries waiting to be found. Although we cannot directly view these planets, scientists infer that an exoplanet is there based on inductive reasoning such as the fact that they are able to detect shifts in the light coming from a star if there’s a planet orbiting it.

If we can conclude that these exoplanets exist, why not design a mission for astronauts to travel there? If we can infer that they are there, what’s stopping us from further exploring an exoplanet?

An exoplanet is a planet outside of our Solar System. The nearest exoplanet is approximately 4.42 light years away, 26 trillion miles from Earth, which is nearly 10,000 thousand times the distance from Pluto to the Sun. If we are able to go at the speed of light, 3.0 x 10^8, then this would only take us 4.42 years to get there. However, the current technology is only able to go 20,000 miles per hour, so it would take 142,000 years to reach the nearest exoplanet to Earth. Scientists have not yet developed an aircraft that has been able to even come close to traveling at the speed of light. 

This trip would require generations of people to live in space because of how long it will take, and we don’t have that many people that are willing to live their full lives in space. Think about the fact that living here on Earth will be nothing like living in space for your entire life. When going to space, one needs to carry light because the more weight that we put inside of the aircraft, the more energy needed to actually move the aircraft. We don’t need a lot of fuel to travel, but we do need it to actually get to the exoplanet. Because of the need to save space and energy, there can only be a limited amount of the things needed to survive. So, when things such as food, water, or fuel runs out there is no way to renew these things for the people in space. Scientists need to find a way to renew these important things and this is something that is stopping them from traveling to an exoplanet.

Technology regarding the aircraft itself and a person’s health becomes a huge problem when it comes to attempting to travel to anything outside of our solar system. Earth’s atmosphere usually protects us from the solar rays and cosmic rays. In space, astronauts no longer have that protection, so it’s important that the deeper we are into space the better protection we have to protect our technology and our astronauts. The problem that they face presently is the fact that statistically, a week in space’s cosmic ray environment will shorten an astronaut’s life by about a day. We can only guess how much shorter someone’s life will be with a generation of people needing to be in space for 142,000 years.

The cosmic rays during the trip to an exoplanet would do serious damage to most of our technology presently because of the high energies coming off of cosmic rays, especially if we would need to go to a quicker speed than ever before. Scientists do not yet know whether or not the deeper depths of space hold high energy rays or low energy rays. There is no real way to detect the energy of the rays that are in the path of traveling to an exoplanet.Therefore, it is quite difficult to know what they are actually preparing for when building an aircraft for an area not as well known. Whatever the energy of the rays are the technology still needs to be able to withstand these high amounts of cosmic rays for a distance that is almost 4.42 light years away. Our spacecrafts that we have aren’t able to withstand cosmic rays for this long amount of time and distance. There are ideas to advance this technology such as using hydrogen- rich plastics or adding an extra sheet of metal or aluminum on the aircraft.  There are ideas such that they would build the metal on an aircraft thicker but this still will make the actual craft heavier, and it wouldn’t be much of any help because metal can’t withstand high cosmic rays for a long period of time. In addition, it is believed that this would cause an increase to secondary radiation and cause an increase to the risk of radiation depending on the energy source itself. The longer scientists take to figure out a plan to advance the technology for space travel, the longer it will take for there to be a real mission to an exoplanet in the deeper depths of space, unfortunately.

When attempting to travel outside of our solar system to an exoplanet, there is so much time, money, and brainpower that needs to go into it. There are so many things that needs to be fixed before any expedition to space can happen. There are things such as the lives of people, the cosmic rays’ power in space, the fact that we can’t renew valuable resources, and the power of current technology that goes into it. Scientists still are thinking about ways to improve these things, so that maybe one day there will be successful mission to our nearest exoplanet.


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s